THE REACTION OF TRIAMINOPHOSPHINES WITH PERFLUOROKETONES. THE SO-CALLED TRISDIMETHYLAMINODIFLUOROMETHYLENEPHOSPHORANE Fausto Ramirez¹ and C. P. Smith, Department of Chemistry, State University of New York, Stony Brook, New York. Seymour Meyerson, American Oil Co., Whiting, Indiana. (Received 31 March 1966; in revised form 27 May 1966)

Mark² reported that the reaction of trisdimethylaminophosphine, (TA), with a-trifluoroacetophenone, (TFA), gave <u>tris</u>-<u>dimethylaminodifluoromethylenephosphorane</u>, (I), $[(CH_3)_3N]_3PCF_3$ in 60% yield. He assigned the value of +65 ppm to the ³¹P nmr shift of I, relative to H₃PO₄, and stated that "the structure seems to be the first example of a pentacovalent phosphorus compound with an actual phosphorus-carbon double bond (d-p overlap)". The ylide structure I was based also on ¹⁹F and ¹H nmr data and on infrared and mass spectrometry².

Several observations led us to question the ylide structure I. (1) The related ylide $[(CH_3)_{\pm}N]_{\pm}PC(CO,E)(E)$ had $\delta^{31}P=-63$ ppm³. Even accepting some of the rationalizations offered by Mark², such an effect of the fluorines on the shift was puzzling. (2) The elemental analysis of I was questionable. (3) The mass spectral data was scanty. Mark stated that "spectrometry indicated the following peaks: 179, 154 (abundant), 139, 135, 110 (abundant), 44 (abundant)"; and that "the abundance of peak 154 indicates the ready detachment of trimethylamine from the ylide I". (4) The ylide I was said² to be unreactive toward benzaldehyde, when the former was "pure", but reactive if "impure". We had observed a rapid reaction of the related

3651

ylide (C.H.s) PCBr: with benzaldehyde".

We have now found that the major product, about 40%, of the reaction of TA with TFA was <u>difluorotrisdimethylaminophosphor</u>ane, (II), a new substance. The physical properties given below, and the nur data summarized in Table 1, agreed with those reported by Mark² for the ylide I. Table 1 includes data for two known trifluorobisdialkylaminophosphoranes^{5,6}. The data suggest that the fluorines of II are in axial positions in a trigonal bipyramid, and that the molecule is, probably, stereochemically rigid⁷. The ¹H nmr was similar at -60°.

The major product, about 50%, of the reaction of TA with hexafluoroacetone, (HFA) was also the phosphorane II. In addition, we isolated <u>ca</u>. 10% of the amidate IV, $[(CH_3)_2N]_3PO$, $6^{31}P$: -22 ppm, and <u>ca</u>. 30% of the fluoridate V, $[(CH_3)_2N]_2P(O)F$ $\delta^{31}P$: -40 ppm, J_{PF} = 975 ops. The reaction was run at 30° and at -70° with analogous results.

The phosphorane II was also prepared in 60% yield from TA and sulfur tetrafluoride. <u>This shows the absence from II of the</u> <u>carbon atom that distinguishes it from ylide I</u>.

 $[(CH_3)_3N]_3P + CF_3.CO.R \longrightarrow [(CH_3)_3N]_3PF_3, (II) \leftrightarrow SF_4 + [(CH_3)_3N]_3P$

Experimental. Equimolar amounts of TA and of TFA were reacted at 30° in benzene. A fraction with b.p. 32-34° (2 mm) was obtained in 55% yield after distillations from a 12-in and a 24-in spinning band column. Only the nmr signals due to II were observable (Table 1). However, the mass spectral data showed that the liquid contained an estimated 75% of II, plus six other components in detectable concentrations. One of these was a diamino-imidophosphorofluoridate, III. The amidate IV, and the fluoridate V were also present. There seemed to be traces of the ylide I, and of an analog of it, VI, with a fluorine in place of an amino group; their concentrations could not be estimated. Most of these substances, including II, were very sensitive to moisture. Two further distillations of the liquid gave <u>phosphorane II</u> of estimated 95+% purity, by mass spectrometry; b.p. 35° (3 mm); n_D^{25} 1.4190, d^{25} 1.0604; anal. found: C, 36.1; H, 9.2; N, 21.3; F, 18.7; P, 15.4; mol. wt. 193 (oryoscopic in benzene). $C_{eH_1eN_3}F_{e}P$ requires: C, 35.8; H, 8.9; N, 20.9; F, 18.9; P, 15.4; mol. wt. 201.

The IR spectrum⁸was examined from 80 to 4000 cm⁻¹. The bands at 107 and 740 cm⁻¹ are attributed to the axial bending and the asym. stretching modes of the PF₂, respectively. In $Cl_2PF_2^9$ these were at 122 and 678 cm⁻¹.

Table 1. NMR Shifts, in ppm, of Fluoroaminophosphoranes. $\delta P \underline{vs} H_3 PO_4 \cdot \delta F \underline{vs} CF_3 COOH, J, eps.$ ^aThis work. ^bRef. 2. ^cRef. 5. ^d Ref. 6

	$X = N(CH_3)_B^{a}$		X - P	X - P
NMR	R = CH ₃	Lit. ^b	$\mathbf{R} = \mathbf{C}_{\mathbf{B}}\mathbf{H}_{\mathbf{S}}$	R - CH3
бР	+65.7	+65.5	+63.7°	
(F(ar)	-25.1	-25.2	-17.0°; -11.8 ^d	-17.3 ^d
۶F(eq)	none	none	-9.0°; -3.6 ^d	+1.4 ^d
JF(ax)P	700	705	758°; 753 ^d	752 ^d
JF(eq)P	none	none	890°; 876 ^d	871 ^d
τH	7.40	7.36		7.35 ^d
J _{HP}	10.5	10.8		11 ^d
J _{HF} (ax)	2.8	2.9	•••••	2.8 ^d

Table 2. Assignment of peaks in the Mass Spectrum^a of the Liquid Boiling at $32-34^{\circ}$ (2.5 mm)^b Obtained from the Beaction of Trisdimethylaminophosphine with a,a,a-Trifluoroacetophenone (1:1 mole ratis), in Benzene at 30° , Difluorotrisdimethylaminophosphorane, II, is the Major Constituent (Estimated Concentration 75%).

No	Probable Structure	Parent Mass	Masses of Associated Fragment-ions
II	[(CH ₃) ₂ N] ₃ PF ₂	201	182 ^d , 157 ^e , 141 ^f , 138 ^f , 113 ^f , 112 ^g , 94 ^h , 69 ¹
III	$[(CH_3)_2N]_2P(NCH_3)F$	167	
IV	[(CH ₃) ₂ N] ₃ PO	179	135 ^e
V	$[(CH_3)_3N]_3P(0)F$	154	153 ^J , 110 ^e
I	$\left[\left(CH_{3}\right)_{2}N\right]_{3}P=CF_{2}$	213	212 ^j , 211, 210
VI	$[(CH_3)_2N]_2(F)P=CF_2$	188	187 ^j , 186, 185
	[(CH ₃) ₂ N] ₃ P	163	119 ^e

^aA limited application of the method given by 3. Meyerson, <u>Anal.</u> <u>Chem.</u>, <u>31</u>, 174 (1959) led to partial spectra attributed to the seven components listed. Peaks so identified as arising wholly from a single component are listed here. An intense peak at mass 44 assigned to the $(CH_3)_2N^+$ ion evidently contains contributions from several components. In the case of the phosphorane II, the <u>phosphor</u>-<u>anyl radical</u> (of. Ref. 4a) is lost in the formation of this ion. ^bAfter distillations from 12-in. and 24-in. spinning band columns. ^cRepeated distillations of II gave small amounts of a substance which showed a parent peak at 219 and a fragment-ion peak at 175. This substance disappeared after several days; it probably is $[(CH_3F)(CH_3)_N]_E(CH_3)_2N]_2F_2$. ^dLoss of F atom from parent ion. ^eLoss of $(CH_3)_2N$. ^fLoss of CH_4 , F, and $(CH_3)_2N$, respectively, from the 157ion. ⁶Loss of H from 113. ^hLoss of $(CH_3)_2N$ from 138-ion. ¹Loss of $(CH_3)_2N$ from 113-ion. ^j Loss of H. Trialkyl phosphites and trisdimethylaminophosphine attacked the carbonyl-oxygen of vicinal polycarbonyl compounds¹⁰. The, phosphites^{11a} and the aminophosphine^{11b}, however, added to the carbonyl-carbon of aliphatic monoaldehydes. Phosphite, phosphonites and phosphinites, as well as triphenylphosphine gave 2:1 adducts, VIII, with hexafluoroacetone (HFA)¹⁰. These were formed <u>via</u> the 1:1 adducts VII; <u>i.e</u>., the presence of the fluorine atoms directed the phosphorus to the oxygen of the monoketone.

The pyrolysis of the HFA-triphenylphosphine adduct, VIII (R CF₃; Y Z C₆H₅), gave mostly HFA and the phosphine, and some <u>difluorotriphenylphosphorane</u>¹², XII (³¹P +58.1 ppm; triplet, J_{PF} 659 cps) and oxide (C₆H₅)₃PO. Pyrolysis of the HFAtriethyl phosphite adduct, VIII (R CF₃; Y Z OC₈H₅) gave mostly the fluoridate XIV (Y Z OC₈H₅; X O) and the phosphate (C₂H₅O)₃PO, in a 3:1 mole ratio. Part of the fluoridate XIV resulted from the intermediate <u>difluorotriethoxyphosphorane</u>, XII; part of XIV was formed in a reaction that produced also the perfluoroethoxypropene XIII.

The products listed in Table 2 can be derived similarly.

The phosphorane II is XII ($Y = Z = N(CH_3)_2$), and can originate, together with XI, from IX or X <u>via</u> the 1:1 adduct VII. The imidfluoridate III is XIV ($Y = Z = N(CH_3)_2$; $X = NCH_3$), and could result from X by oxygen attack on a methyl group, or from XII by the loss of CH₃F. The amidate IV can form in several ways: from VII, VIII or IX, or by the hydrolysis of XII (II). The fluoridate V is XIV ($Y = Z = N(CH_3)_2$; X = 0), and can result from IX <u>via</u> XV; or IX may be converted into XIV intramolecularly. The fluoridate $f_2C = c - 0 - \frac{p}{Y} + \frac{r}{Y}$ V may be also a product of the hydrolysis (XV) of XII (II). The ylides I and VI may result from the recombination of X at carbon to give R.CO.CF₂.P(FY₂Z), followed by carbon-carbon fission.

References

1.	National Science Foundation Senior Postodctoral Fellow.
2.	V. Mark, Tetrahedron Letters, Nº 42, 3139 (1964).
3.	F.Ramirez, O. P. Madan and C. P. Smith, Tetrahedron,
-	22, 567 (1966).
4.	(a) F. Ramirez, N. B. Desai and N. McKelvie, J. Am. Chem.
	84, 1745 (1962); (b) R. Rabinowitz and R. Marcus, 101d.,
	84, 1312 (1962); (c) W. Ried and H. Appel, Ann. Chem. 679,
	51. 1964).
5.	R. Schmutzler, Angew. Chem. Int. Ed., 2, 753 (1964).
6.	D. H. Brown, G. W. Fraser and D. W. A. Sharp, J. Chem. Soc.
	171 (1966).
7.	R. Schmutzler, Angew. Chem. Int. Ed., 4, 496 (1965).
8.	Instrumentation: Perkin Elmer 521 with KRS-5 thallium
	chloride cells and PE-301 with polyethylene cells.
9.	J. E. Griffith, R. P. Carter and R. R. Holmes, J. Chem.
	Phys., 41, 863 (1964).
10.	(a) F. Ramirez, A. V. Patwardhan and C. P. Smith, J. Am.
	Chem. Soc., 87, 4973 (1965); (b) F. Ramirez, C. P. Smith,
	A. S. Gulati and A. V. Patwardhan, Tetrahedron Letters, 2151
	(1966).
11.	(a) F. Ramirez, A. V. Patwardhan and S. H. Heller, J. Am.,
	<u>Chem. Soc.</u> , <u>86</u> , 514 (1964); (b) V. Mark, <u>1010</u> ., <u>85</u> , 1884
	(1963).
12.	W. C. Firth, S. Frank, M. Garber and V. P. Wystraon,
	Inorg. Chem., 4, 705 (1905), and Her. therein.
13.	A. J. peziale and R. D. Partos, J. Am. Chem. Soc., 87,
	5068 (1965), and ref. therein.